Coverage for /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/site-packages/hypervehicle/geometry/path.py: 69%

262 statements  

« prev     ^ index     » next       coverage.py v7.6.4, created at 2024-10-29 02:51 +0000

1import numpy as np 

2from typing import Optional 

3from abc import ABC, abstractmethod 

4from hypervehicle.geometry.vector import Vector3, cross_product 

5 

6 

7class Path(ABC): 

8 """Abstract parameteric path.""" 

9 

10 @abstractmethod 

11 def __repr__(self): 

12 pass 

13 

14 @abstractmethod 

15 def __call__(self, t): 

16 pass 

17 

18 def length(self, n=20): 

19 """Rudimentary evaluation of path length by sampling and summing.""" 

20 length = 0.0 

21 p0 = self.__call__(0.0) 

22 dt = 1.0 / n 

23 for i in range(n): 

24 p1 = self.__call__((i + 1) * dt) 

25 length += abs(p1 - p0) 

26 p0 = p1 

27 return length 

28 

29 

30class Line(Path): 

31 """Straight line path between two points.""" 

32 

33 __slots__ = ["p0", "p1"] 

34 

35 def __init__(self, p0, p1): 

36 self.p0 = Vector3(p0) 

37 self.p1 = Vector3(p1) 

38 

39 def __repr__(self): 

40 return "Line(p0={}, p1={})".format(self.p0, self.p1) 

41 

42 def __call__(self, t: float): 

43 return self.p0 * (1 - t) + self.p1 * t 

44 

45 def length(self): 

46 return abs(self.p1 - self.p0) 

47 

48 def __add__(self, offset: Vector3): 

49 if isinstance(offset, Vector3): 

50 p0 = self.p0 + offset 

51 p1 = self.p1 + offset 

52 return Line(p0=p0, p1=p1) 

53 else: 

54 raise ValueError(f"Cannot add a {type(offset)} to a line.") 

55 

56 

57class Bezier(Path): 

58 """Bezier curve defined on a list of points.""" 

59 

60 __slots__ = ["B"] 

61 

62 def __init__(self, B): 

63 try: 

64 self.B = [Vector3(p) for p in B] 

65 except Exception as e: 

66 raise ValueError( 

67 f"Was expecting to get a list of points for B, but got {B}" 

68 ) 

69 

70 def __repr__(self): 

71 return f"Bezier(B={self.B})" 

72 

73 def __call__(self, t): 

74 if len(self.B) == 1: 

75 return self.B[0] 

76 n_order = len(self.B) - 1 

77 # Apply de Casteljau's algorithm. 

78 Q = self.B.copy() # work array will be overwritten 

79 for k in range(n_order): 

80 for i in range(n_order - k): 

81 Q[i] = Q[i] * (1.0 - t) + Q[i + 1] * t 

82 return Q[0] 

83 

84 

85class Polyline(Path): 

86 """Collection of Path segments.""" 

87 

88 __slots__ = ["segments", "t_values", "isclosed"] 

89 

90 def __init__(self, segments: list[Path], closed=False, tolerance=1.0e-10): 

91 self.segments: list[Path] = [] 

92 for seg in segments: 

93 self.segments.append(seg) 

94 self.isclosed = closed 

95 if self.isclosed: 

96 p0 = self.segments[0](0.0) 

97 p1 = self.segments[-1](1.0) 

98 if abs(p1 - p0) > tolerance: 

99 self.segments.append(Line(p0, p1)) 

100 self.reset_breakpoints() 

101 

102 def reset_breakpoints(self): 

103 self.t_values = [0.0] 

104 t_total = 0.0 

105 for seg in self.segments: 

106 t_total += seg.length() 

107 self.t_values.append(t_total) 

108 for i in range(len(self.t_values)): 

109 self.t_values[i] /= t_total 

110 

111 def __repr__(self): 

112 text = "Polyline(segments=[" 

113 n = len(self.segments) 

114 for i in range(n): 

115 text += "{}".format(self.segments[i]) 

116 text += ", " if i < n - 1 else "]" 

117 return text 

118 

119 def __call__(self, t): 

120 n = len(self.segments) 

121 if n == 1: 

122 return self.segments[0](t) 

123 

124 f = self.segments[0](t) 

125 f *= 0.0 

126 

127 for i, tl, tu in zip(range(n), self.t_values[:-1], self.t_values[1:]): 

128 t_local = (t - tl) / (tu - tl) 

129 if i == 0: 

130 isokay = t_local <= 1.0 

131 elif i == n - 1: 

132 isokay = t_local > 0.0 

133 else: 

134 isokay = np.logical_and(t_local > 0.0, t_local <= 1.0) 

135 f += self.segments[i](t_local) * isokay 

136 return f 

137 

138 def length(self): 

139 L = 0.0 

140 for seg in self.segments: 

141 L += seg.length() 

142 return L 

143 

144 

145class Spline(Polyline): 

146 """Construct a spline of Bezier segments from a sequence of points.""" 

147 

148 def __init__( 

149 self, 

150 points, 

151 closed: Optional[bool] = False, 

152 tolerance: Optional[float] = 1.0e-10, 

153 ): 

154 """Given m+1 interpolation points p, determine the m-segment 

155 Bezier polyline that interpolates these points as a spline. 

156 This is done by first determining the array of weight points 

157 which define the spline and then evaluating the cubic 

158 Bezier segments. 

159 

160 For a natural spline, the first and last weight points 

161 are also the first and last interpolation points. 

162 And, for the initial guess at the remaining weight points, 

163 just use the supplied data points. 

164 This amounts to copying the whole p collection. 

165 

166 References 

167 ---------- 

168 G. Engelin & F. Uhlig (1996) 

169 Numerical Algorithms with C 

170 Springer, Berlin 

171 Section 12.3.1 

172 """ 

173 self.points = [Vector3(p) for p in points] 

174 if closed and (abs(self.points[0] - self.points[-1]) > tolerance): 

175 self.points.append(Vector3(points[0])) 

176 self.closed = closed 

177 

178 m = len(self.points) - 1 

179 d = [Vector3(p) for p in self.points] 

180 

181 # Apply Gauss-Seidel iteration until 

182 # the internal weight points converge. 

183 for j in range(50): 

184 max_diff = 0.0 

185 for i in range(1, m): 

186 old_p = Vector3(d[i]) 

187 d[i] = 0.25 * (6.0 * self.points[i] - d[i - 1] - d[i + 1]) 

188 max_diff = max(max_diff, abs(d[i] - old_p)) 

189 if max_diff < tolerance: 

190 break 

191 

192 # Final stage; calculate the cubic Bezier segments. 

193 segments = [ 

194 Bezier( 

195 [ 

196 self.points[i], 

197 (2.0 * d[i] + d[i + 1]) / 3.0, 

198 (d[i] + 2.0 * d[i + 1]) / 3.0, 

199 self.points[i + 1], 

200 ] 

201 ) 

202 for i in range(m) 

203 ] 

204 super().__init__(segments, closed, tolerance) 

205 

206 def __repr__(self): 

207 return f"Spline(points={self.points}, closed={self.closed})" 

208 

209 

210class Arc(Path): 

211 """An arc from point a to point b, with a centre at point c.""" 

212 

213 __slots__ = ["a", "b", "c"] 

214 

215 def __init__(self, a: Vector3, b: Vector3, c: Vector3): 

216 self.a = Vector3(a) 

217 self.b = Vector3(b) 

218 self.c = Vector3(c) 

219 

220 def __repr__(self): 

221 return f"Arc(a={self.a}, b={self.b}, c={self.c})" 

222 

223 def __call__(self, t: float): 

224 p, L = self.evaluate_position_and_length(t) 

225 return p 

226 

227 def length(self): 

228 p, L = self.evaluate_position_and_length(1.0) 

229 return L 

230 

231 def evaluate_position_and_length(self, t: float): 

232 l = 0.0 

233 ca = self.a - self.c 

234 ca_mag = abs(ca) 

235 cb = self.b - self.c 

236 cb_mag = abs(cb) 

237 if abs(ca_mag - cb_mag) > 1.0e-5: 

238 raise Exception(f"Arc: radii do not match |ca|={abs(ca)} |cb|={abs(cb)}") 

239 

240 # First vector in plane. 

241 tangent1 = Vector3(ca) 

242 tangent1.normalize() 

243 

244 # Compute unit normal to plane of all three points 

245 n = cross_product(ca, cb) 

246 if abs(n) > 0.0: 

247 n.normalize() 

248 else: 

249 raise Exception( 

250 "Arc: cannot find plane of three points. Maybe you are trying " 

251 + "to define an arc with 180 degrees?" 

252 ) 

253 

254 # Third (orthogonal) vector is in the original plane 

255 tangent2 = cross_product(n, tangent1) 

256 

257 # Now transform to local coordinates to do the calculation of the point along 

258 # the arc in the local xy-plane, with ca along the x-axis 

259 cb_local = Vector3(cb) 

260 cb_local.transform_to_local_frame(tangent1, tangent2, n) 

261 if np.any(np.absolute(cb_local.z) > 1.0e-6): 

262 raise Exception(f"Arc: problem with transformation cb_local={cb_local}") 

263 

264 # Angle of the final point on the arc is in the range -pi < th <= +pi 

265 theta = np.arctan2(cb_local.y, cb_local.x) 

266 

267 # The length of the circular arc 

268 l = theta * cb_mag 

269 

270 # Move the second point around the arc in the local xy-plane 

271 theta *= t 

272 loc = Vector3(np.cos(theta) * cb_mag, np.sin(theta) * cb_mag, 0.0 * theta) 

273 

274 # Transform back to global xyz coordinates and add the centre coordinates 

275 loc.transform_to_global_frame(tangent1, tangent2, n, self.c) 

276 

277 return loc, l 

278 

279 

280class ArcLengthParameterizedPath(Path): 

281 """A Path reparameterized such that equal increments in t correspond 

282 to approximately equal increments in arc length. 

283 """ 

284 

285 __slots__ = ["underlying_path", "arc_lengths", "t_values", "_n"] 

286 

287 def __init__(self, underlying_path, n=1000): 

288 if isinstance(underlying_path, Path): 

289 self.underlying_path = underlying_path 

290 if n < 1: 

291 raise RuntimeError("Should have at least one arc-length sample.") 

292 self._n = n 

293 self.set_arc_lengths() 

294 else: 

295 raise NotImplementedError("underlying_path should be a type of Path") 

296 return 

297 

298 def set_arc_lengths(self): 

299 """ 

300 Compute the arc lengths for a number of sample points along the Path 

301 (in equally-spaced values of t) so that these can later be used to do 

302 a reverse interpolation on the evaluation parameter. 

303 """ 

304 dt = 1.0 / self._n 

305 L = 0.0 

306 self.arc_lengths = [ 

307 0.0, 

308 ] 

309 self.t_values = [ 

310 0.0, 

311 ] 

312 p0 = self.underlying_path(0.0) 

313 for i in range(1, self._n + 1): 

314 p1 = self.underlying_path(dt * i) 

315 L += abs(p1 - p0) 

316 self.arc_lengths.append(L) 

317 self.t_values.append(dt * i) 

318 p0 = p1 

319 self.t_values = np.array(self.t_values) 

320 self.arc_lengths = np.array(self.arc_lengths) 

321 return 

322 

323 def underlying_t(self, t): 

324 """ 

325 Search the pieces of arc length to find the piece containing the 

326 desired point and then interpolate the local value of t for that piece. 

327 """ 

328 # The incoming parameter value, t, is proportional to arc_length fraction. 

329 L_target = t * self.arc_lengths[-1] 

330 

331 # Do a single variable linear interpolation to approximate an ordinary t value 

332 ut = np.interp(L_target, self.arc_lengths, self.t_values, left=0.0, right=1.0) 

333 return ut 

334 

335 def __repr__(self): 

336 return "ArcLengthParameterizedPath(underlying_path={}, n={})".format( 

337 self.underlying_path, self._n 

338 ) 

339 

340 def __call__(self, t): 

341 return self.underlying_path(self.underlying_t(t)) 

342 

343 def length(self): 

344 return self.underlying_path.length() 

345 

346 

347def roberts(eta: float, alpha: float, beta: float): 

348 """Computes the stretched coordinate in the range [0.0..1.0] 

349 using the boundary-layer-like transformation devised by Roberts. 

350 

351 Parameters 

352 ------------ 

353 eta : float 

354 unstretched coordinate, 0 <= eta <= 1.0 

355 

356 beta : float 

357 stretching factor (more stretching as beta --> 1.0) 

358 

359 alpha : float 

360 Location of stretching 

361 | alpha = 0.5: clustering of nodes at both extremes of eta 

362 | alpha = 0.0: nodes will be clustered near eta=1.0 

363 """ 

364 lmbda = (beta + 1.0) / (beta - 1.0) 

365 lmbda = np.power(lmbda, ((eta - alpha) / (1.0 - alpha))) 

366 etabar = (beta + 2.0 * alpha) * lmbda - beta + 2.0 * alpha 

367 etabar = etabar / ((2.0 * alpha + 1.0) * (1.0 + lmbda)) 

368 return etabar 

369 

370 

371def clustered_roberts(eta: float, end1: bool, end2: bool, beta: float): 

372 """Compute a stretched ordinate. 

373 

374 Parameters 

375 ------------ 

376 eta : float 

377 Unstretched ordinate, scalar or array. 

378 

379 end1 : bool 

380 Cluster flag for end 1. If False, points are not clustered to end 1. 

381 If True, points ARE clustered to end 1. 

382 

383 end2 : bool 

384 Cluster flag for end 2. If False, points are not clustered to end 2. 

385 If True, points ARE clustered to end 2. 

386 

387 beta : float 

388 Grid stretching parameter: 

389 1 < beta < +inf : points are clustered 

390 The closer to 1, the more the clustering. 

391 beta < 1 for no clustering. 

392 """ 

393 # Decide on stretching parameters for Robert's transform. 

394 alpha = 0.5 

395 reverse = False 

396 cluster = True 

397 if ((not end1) and (not end2)) or (beta < 1.0): 

398 cluster = False 

399 if end1 and end2: 

400 alpha = 0.5 

401 if end1 and (not end2): 

402 reverse = True 

403 alpha = 0.0 

404 if (not end1) and end2: 

405 reverse = False 

406 alpha = 0.0 

407 if cluster: 

408 if reverse: 

409 eta = 1.0 - eta 

410 etabar = roberts(eta, alpha, beta) 

411 if reverse: 

412 etabar = 1.0 - etabar 

413 else: 

414 etabar = eta 

415 return etabar 

416 

417 

418def distribute_points(t1: float, t2: float, n: int, end1, end2, beta): 

419 """Generate a set of n+1 points nonuniformly distributed from t1 to t2. 

420 

421 Parameters 

422 ----------- 

423 t1 : float 

424 Parameter value 1. 

425 

426 t2 : float 

427 Parameter value 2. 

428 

429 n : int 

430 Number of intervals (the number of points is n+1). 

431 

432 end1 : bool 

433 Cluster flag for end 1. If False, points are not clustered to end 1. 

434 If True, points ARE clustered to end 1. 

435 

436 end2 : bool 

437 Cluster flag for end 2. If False, points are not clustered to end 2. 

438 If True, points ARE clustered to end 2. 

439 

440 beta : float 

441 Grid stretching parameter: 

442 1 < beta < +inf : points are clustered 

443 The closer to 1, the more the clustering. 

444 beta < 1 for no clustering. 

445 

446 Returns the array of n+1 distributed values. 

447 """ 

448 # Compute the grid points as an array. 

449 etabar = clustered_roberts(np.linspace(0.0, 1.0, n + 1), end1, end2, beta) 

450 

451 # Compute the parameter value within the given end-points. 

452 x = (1.0 - etabar) * t1 + etabar * t2 

453 return x 

454 

455 

456class ClusterFunction(ABC): 

457 @abstractmethod 

458 def __repr__(self): 

459 pass 

460 

461 @abstractmethod 

462 def __call__(self, x): 

463 pass 

464 

465 @abstractmethod 

466 def distribute_parameter_values(self, nv): 

467 pass 

468 

469 

470class LinearFunction(ClusterFunction): 

471 def __init__(self): 

472 return 

473 

474 def __repr__(self): 

475 return "LinearFunction()" 

476 

477 def __call__(self, x): 

478 """ 

479 Simply returns the value, be it scalar or array. 

480 """ 

481 return x 

482 

483 def distribute_parameter_values(self, nv): 

484 """ 

485 Returns an array of uniformly-distributed sample points in range [0.0 ... 1.0]. 

486 """ 

487 return np.linspace(0.0, 1.0, nv) 

488 

489 

490class RobertsFunction(ClusterFunction): 

491 """Roberts' boundary-layer-like clustering function. 

492 

493 Note that, compared with the old definition that we delegate the actual work to, 

494 the ends are renamed 0, 1 to align with the Eilmer4 notation. 

495 """ 

496 

497 _slots_ = ["end0", "end1", "beta"] 

498 

499 def __init__(self, end0, end1, beta): 

500 """ 

501 Store the cluster parameters for later use. 

502 """ 

503 self.end0 = end0 

504 self.end1 = end1 

505 self.beta = beta 

506 return 

507 

508 def __repr__(self): 

509 return f"RobertsFunction(end0={self.end0}, end1={self.end1}, beta={self.beta})" 

510 

511 def __call__(self, x): 

512 return clustered_roberts(x, self.end0, self.end1, self.beta) 

513 

514 def distribute_parameter_values(self, nv): 

515 """Returns an array of clustered sample points in range [0.0 ... 1.0].""" 

516 return distribute_points(0.0, 1.0, nv - 1, self.end0, self.end1, self.beta)